
doi: 10.1098/rsta.1997.0009
, 255-281355 1997 Phil. Trans. R. Soc. Lond. A

 
P. D. Asimow, M. M. Hirschmann and E. M. Stolper
 
An analysis of variations in isentropic melt productivity
 

Email alerting service
 herecorner of the article or click 

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

 http://rsta.royalsocietypublishing.org/subscriptions go to: Phil. Trans. R. Soc. Lond. ATo subscribe to 

This journal is © 1997 The Royal Society

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;355/1723/255&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/355/1723/255.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/


An analysis of variations in
isentropic melt productivity

B y P. D. Asimow1, M. M. Hirschmann1,2 and E. M. Stolper1

1Division of Geological and Planetary Sciences, California Institute of Technology,
Pasadena, CA 91125, USA

2Department of Geology, University of North Carolina,
Chapel Hill, NC 27599, USA

The amount of melt generated per unit pressure drop during adiabatic upwelling,
the isentropic melt productivity, cannot be determined directly from experiments
and is commonly assumed to be constant or to decrease as melting progresses. From
analysis of one- and two-component systems and from calculations based on a ther-
modynamic model of peridotite partial melting, we show that productivity for re-
versible adiabatic (i.e. isentropic) depressurization melting is never constant; rather,
productivity tends to increase as melting proceeds. Even in a one-component system
with a univariant solid–liquid boundary, the 1/T dependence of (∂S/∂T )P and the
downward curvature of the solidus (due to greater compressibility of liquids relative
to minerals) lead to increased productivity with increasing melt fraction during batch
fusion (and even for fractional fusion in some cases). Similarly, for multicomponent
systems, downward curvature of contours of equal melt fraction between the solidus
and the liquidus contributes to an increase in productivity as melting proceeds. In
multicomponent systems, there is also a lever-rule relationship between productiv-
ity and the compositions of coexisting liquid and residue such that productivity is
inversely related to the compositional distance between coexisting bulk solid and liq-
uid. For most geologically relevant cases, this quantity decreases during progressive
melting, again contributing to an increase in productivity with increasing melting.
These results all suggest that the increases in productivity with increasing melt frac-
tion (punctuated by drops in productivity upon exhaustion of each phase from the
residue) predicted by thermodynamic modelling of melting of typical mantle peri-
dotites using MELTS are neither artifacts nor unique properties of the model, but
rather general consequences of adiabatic melting of upwelling mantle.

1. Introduction

The amount of melting experienced by upwelling mantle is one of the most impor-
tant parameters required for understanding the dynamics of basalt production and
the observed compositional variability of basalts at mid-ocean ridges and sites of
hot spot magmatism. The key parameter is the ‘productivity’ of the melting process
(i.e. the amount of melt production per decrement of pressure (Hirschmann et al.
1994)), which exerts important controls on the dynamics and style of melt extraction,
particularly if it varies with depth (Spiegelman 1993; Asimow et al. 1995a). The pro-
ductivity also relates the geometry of the melting region to the average depth of melt
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generation and to the total amount of melt produced, and therefore to the thickness
of the oceanic crust (Langmuir et al. 1992). The motivation for this paper is that
the primary information available from the study of igneous rocks, their composi-
tions and volumes, cannot be interpreted in terms of source dynamics and geometry
without an understanding of the factors influencing productivity in upwelling mantle.

Mantle upwelling at mid-ocean ridges and plumes in the absence of melt or fluid
flow is usually approximated as an adiabatic process. To the extent that upwelling
is slow, relative to mass and thermal transfer in the ascending peridotite, the pro-
cess can also be envisioned as reversible. Under these conditions, processes occurring
in upwelling mantle can be approximated as isentropic (Verhoogen 1965; McKenzie
1984). Once melt or fluid migration is allowed to occur or the effects of viscous de-
formation of the solids are considered, the process is no longer locally adiabatic or
isentropic, and indeed, no simple thermodynamic constraints can be applied to the
general case. Nevertheless, certain idealized end-member processes, such as batch
fusion or fractional fusion (in which each increment of melt production during up-
welling can be approximated as adiabatic and reversible), can be evaluated relatively
simply from a thermodynamic perspective. However, despite the apparent simplicity
of the problem when posed thermodynamically—e.g. for the reversible adiabatic case,
pressure (P ), entropy (S) and chemical composition are the independent variables
in upwelling mantle and the equilibrium state is one of minimum enthalpy (H)—the
general features of productivity during adiabatic depressurization of mantle peri-
dotite (and even of simpler, model systems) are little understood. The difficulty is
partly that adiabatic processes are not readily simulated by experiment; i.e. whereas
it is relatively simple to do an experiment at fixed or known P , temperature (T ),
and chemical composition, there is no straightforward way to do an experiment at
fixed or known S or H at high pressure. Another difficulty, however, is that there
is, to our knowledge, no general treatment of adiabatic melting and its consequences
even in simple systems, so there is no framework or background for understanding
the behaviour of complex natural systems undergoing this process. Although space
limitations prevent us from presenting a complete treatment, the goal of this paper is
to expose some of the key parameters entering into the process of isentropic melting
of the mantle and, by illustrating some of the expected behaviours and what causes
them, to help calibrate people’s intuition about this important process.

2. Background and previous work

The simplest approach to estimating melt production in upwelling peridotite is
to assume that melt fraction increases linearly as pressure decreases; i.e. isentropic
productivity is assumed to be constant (Turcotte & Ahern 1978; Klein & Lang-
muir 1987; Niu & Batiza 1991; Kinzler & Grove 1992). In other cases, plausible
assumptions have been made that lead to decreasing productivity with progressive
decompression; for example, McKenzie & Bickle (1988) inferred, based on available
peridotite melting data, that melt production would be enhanced near the solidus of
natural peridotite (similar to the behaviour of a simple system at a eutectic or peri-
tectic; see McKenzie & Bickle 1990), and Langmuir et al. (1992) argued that melting
is more productive at high pressure because the solidus and liquidus are closer to-
gether. Although both of these effects could be important under some conditions, we
show below that decreasing productivity during upwelling is exactly the opposite of
what is expected in most natural cases; i.e. productivity is generally smaller at the
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Figure 1. Schematic comparison of enthalpy- and entropy-conservation during adiabatic melting.
(a) In P–T space, a parcel of adiabatically upwelling mantle intersects its solidus at P0, state
1. At lower pressure Pf , the metastable extension of the solid adiabat is state 2. The stable
partially molten state 3 is obtained by an adiabatic, isobaric (i.e. isenthalpic) process whereby
the enthalpy recovered by cooling from state 2 to state 3 equals that required to melt up to some
degree of melting F . State 4 is reached by reversible, adiabatic (i.e. isentropic) melting from
state 1. (b) In H–S space, the difference between the two adiabatic processes (the isentropic
path from 1 → 4, shown as a gray arrow, versus the path from 1 → 2 → 3, shown as black
arrows) is shown for a hypothetical one-component system. The partially molten, stable state 4
is reached by adiabatic and reversible upwelling from the stable solid state 1 (on the solidus at
P0); the direct path from 1→ 4 is accomplished in a series of infinitesimal, reversible, adiabatic
decompression steps; this state is clearly the minimum possible H for this S at Pf . State 2 is
the metastable solid state at Pf reached by reversible, adiabatic (i.e. constant S) decompression
from state 1 at P0. State 3 is shown to be the stable, partially molten state on the tie-line
between solid and liquid at Pf that has the same enthalpy as state 2 (reached by an irreversible,
adiabatic, isobaric path at Pf that maximizes S). Clearly, state 3 has higher H and higher S
than state 4. Furthermore, application of the lever rule along the tie-line shows that state 3
has higher F than state 4. Returning to (a), note that in a multicomponent system state 3
generally also has higher T than state 4, although in a one-component system both states lie on
the solidus and are indistinguishable in P–T space.

initiation of decompression melting and increases with progressive decompression.
Note that in this paper we restrict our attention to changes in productivity with
progressive melting along particular adiabats; we leave comparisons among adiabats
of different potential temperature for future work.

A widely used approach to estimating adiabatic melting paths is based on the
assumption that at a given pressure the enthalpy of the metastable solid adiabat (a
state that can be readily calculated from an initially stable subsolidus assemblage)
and that of the stable partially molten adiabat are equal (Ramberg 1972; Cawthorn
1975; Hess 1992; Langmuir et al. 1992; Longhi 1992; Hart 1993). In practice, these
authors balanced the enthalpy required to melt the metastable solid against the
enthalpy recovered by cooling to the stable partially molten assemblage. Although
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these authors presumably intended to calculate the amount of melt produced on
reversible, adiabatic upwelling of peridotite, they actually calculated the amount of
melt produced on a somewhat different adiabatic path. Consider figure 1, where this
melting path (informally labelled the ‘Hess–Langmuir melting path’) is compared
with isentropic upwelling in P–T space (figure 1a) and in the less familiar but more
informative H–S plane (figure 1b). We have drawn figure 1a for a multicomponent
system, so that the melting paths do not coincide with the solidus, but for simplicity
we have drawn figure 1b for a one-component system. In H–S space, the locus of
states of a phase at constant pressure fall on a curve whose slope is temperature
(i.e. (∂H/∂S)P = T ). The coexistence of two phases at equilibrium requires equal T
and equal P , so it is represented by a tie-line tangent to isobaric curves for the two
phases. The isentropic path from stable state 1 on the solidus at P0 to the stable,
partially molten state 4 at Pf is vertical in H–S space. The Hess–Langmuir melting
path, however, corresponds to a path on figure 1b from the stable state 1 at P0 to
the metastable solid state 2 at Pf (reached by a reversible adiabatic decompression),
followed by a second path to the stable partially molten state 3 at Pf (which has the
same enthalpy as state 2). Figure 1b shows that state 3 is at a higher melt fraction
(F ), higher S and higher H than state 4. For a multicomponent system, state 3
can also be at a higher T than state 4 on the isentropic path. Hence the process
that these authors actually approximated contains an irreversible, isobaric, adiabatic
melting step (i.e. the adiabatic path from state 2 to state 3 at constant P and H
leading to maximization of S), which leads to more melting than that produced by
reversible adiabatic upwelling. Although the quantitative differences between these
two paths are small, particularly at low degrees of melting, this example illustrates
the importance of precise definition of the thermodynamics governing the melting
process. Note that this treatment is not ‘wrong’ in that it does follow an adiabatic
path, just not the reversible one, and it is possible that such a path could be of
petrologic or geophysical interest; e.g. at a solid–solid phase transformation if the
transition is kinetically inhibited (Solomatov & Stevenson 1994).

An alternative to this approach would be to estimate melt production during
reversible (i.e. isentropic) upwelling by balancing S rather than H in equivalent cal-
culations comparing the metastable solid assemblage and the stable partially molten
assemblage (i.e. by breaking the isentropic path from state 1 to state 4 in figure 1b
into the sum of paths 1 → 2 and 2 → 4). Actual conversion of the metastable solid
state 2 to final state 4 would require in this case an irreversible non-adiabatic process
at constant P and S leading to a minimization of H. The direct path from 1→4, on
the other hand, is accomplished in a series of infinitesimal reversible adiabatic steps.
Although both entropy-conserving and enthalpy-conserving calculations of this sort
are conceptually simple, rigorous application of this approach to modelling adiabatic
productivity in multicomponent systems would in practice be difficult because of the
difficulty of incorporating into the calculation the dependence of the thermodynamic
parameters (heat capacities, entropy of fusion, etc.) on changes in melt, solid, and
system composition, on residual mineralogy, and on temperature and pressure.

There have been several well-defined thermodynamic treatments of isentropic
batch melting of decompressing peridotite (McKenzie 1984; Miller et al. 1991; Al-
barède 1992; Iwamori et al. 1995). These treatments use as inputs parametrizations of
experimental data on isobaric productivity (i.e. (∂F/∂T )P , where F is the melt frac-
tion), the positions of the solidus and liquidus, and the entropy of fusion (assumed
to be constant). These parametrizations are generally poorly constrained (partic-
ularly the isobaric productivity near the solidus) and the isentropic productivity

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Isentropic melt productivity 259

functions that have been presented are consequently highly variable. For example,
McKenzie (1984) favoured models that yield roughly constant or strongly decreasing
productivity during upwelling, while Iwamori et al. (1995) and Miller et al. (1991)
presented models with complex productivity functions that largely reflect their fits
to the solidus and liquidus and to the isobaric productivity function. Note that these
treatments cannot easily incorporate the effects on melting of changes in the com-
positions or abundances of residual phases, of pressure dependent solid–solid phase
changes (Asimow et al. 1995a), or of changing bulk composition, and thus, like the
simple enthalpy- or entropy-balances described in the preceding paragraphs, they do
not provide insight into the influence of these features of peridotite phase equilibria
on productivity, which are likely to be substantial. Moreover, these treatments are
not well-suited to evaluating the productivity of fractional fusion.

We have adopted in our work (Hirschmann et al. 1994; Baker et al. 1995; Asi-
mow et al. 1995a, b) an approach based on a self-consistent thermodynamic model of
multicomponent liquid-crystal equilibria. Using a modification of the MELTS code
(Ghiorso & Sack 1995), we minimize directly the enthalpy for a specific bulk com-
position at a given P and S. Because this treatment incorporates internally consis-
tent thermochemical models for the liquid and solid phases in mantle peridotites,
it implicitly takes into account the phase and compositional changes that occur on
melting of peridotite without having to incorporate them into parametrizations for
the solidus and liquidus, the isobaric productivity etc., which in natural peridotite
are unlikely to be fit by simple or general functional forms. In addition, because the
model is not linked to any particular bulk composition on which experiments have
been conducted, it is equally applicable to batch and fractional melting and can be
applied to a range of fertile through depleted peridotite compositions. Though the
accuracy of MELTS predictions is at present imperfect, it has been shown to capture
even some relatively subtle features of available melting experiments on peridotite
(Hirschmann et al. 1994; Baker et al. 1995), and it thus is a promising vehicle for
modelling peridotite phase equilibria and melting energetics. Contrary to the results
of all previous treatments, MELTS predicts that isentropic productivity strongly in-
creases with progressive melting; e.g. initial melting of a fertile peridotite is predicted
to be extremely unproductive, with near-solidus isentropic productivity values near
0.25% kbar−1, rising to values of ca. 3% kbar−1 near the exhaustion of clinopyroxene
(figure 7; see also Hirschmann et al. 1994; Asimow et al. 1995a).

3. Isentropic melting in simple systems

Given the wide range in productivity functions that have been proposed for melt-
ing during adiabatic decompression—ranging from constant (Turcotte & Ahern 1978;
Klein & Langmuir 1987; Scott & Stevenson 1989; Niu & Batiza 1991; Sparks & Par-
mentier 1991; Kinzler & Grove 1992), to decreasing as melting proceeds (McKenzie
1984; McKenzie & Bickle 1988; McKenzie & Bickle 1990; Langmuir et al. 1992;
Longhi 1992), to increasing as melting proceeds (Hirschmann et al. 1994; Asimow
et al. 1995a, b), to complex and irregular (McKenzie 1984; McKenzie & O’Nions
1991; Miller et al. 1991; Iwamori et al. 1995)—it is fair to say that this phenomenon
is poorly understood. In order to develop a more complete understanding of the
relationship between melting energetics, phase equilibria, and productivity, in this
section we examine the behaviour of melting during isentropic upwelling of simple
model systems. The melting behaviour of these systems is easy to understand, yet sur-
prisingly rich in insights that can be generalized to multicomponent systems. These
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simple systems thus provide a framework for understanding the productivity during
upwelling of more complex natural systems. A key conclusion is going to be that the
melting behaviour of these simple systems strongly suggests that the productivity
functions generated by the MELTS calculations capture at least qualitatively the
behaviour of the real mantle.

In the following discussions we consider both isentropic batch melting and frac-
tional fusion; fractional fusion is envisioned as a sequence of infinitesimal isentropic
melting steps, each followed by extraction of the melt phase, carrying its entropy out
of the system with it. Both processes are defined by the restriction

dS = Sl dM ; (3.1)

i.e. the only changes we allow in the entropy of the system, S (extensive variables
are boldface), are due to extraction of liquid and the resulting change is given by the
specific entropy of the liquid, Sl, times the change in system mass, M . The general
forms we derive will apply to isentropic batch and incrementally isentropic fractional
fusion as well as to any continuous melting or dynamic melting process (Langmuir
et al. 1977) subject to the restriction that liquid mass is a function of no variables
other than solid mass (e.g. M l = 0 for fractional fusion; M l = M0−M s where M0

is the initial system mass, a constant, for batch fusion; and

M l =


M0 −M s, for M s > (1− f∗)M 0,

f∗

1− f∗M
s, for M s 6 (1− f∗)M 0,

(3.2)

for continuous fusion where f∗ is a constant retained melt fraction). Note that M l

refers to the mass of liquid remaining in the system; extracted liquid is considered
no further. We use the quantity F to refer to the melt fraction by mass normalized
to original source mass for all melting processes:

F = 1− M
s

M 0 , (3.3)

and the quantity f to refer to the mass fraction of liquid that remains in the source
region,

f =
M l

M l +M s , (3.4)

i.e. for batch melting, f = F ; for fractional melting, f = 0; and for continuous melting
as defined in equation (3.2), f = F until F reaches f∗ and f = f∗ thereafter.

(a ) One-component systems
The isentropic behaviour of a one-component system can be evaluated rigorously

in a closed form. Taking P and T as the independent variables, for a single phase of
one component we write

dSφ =
(
∂Sφ

∂T

)
P

dT +
(
∂Sφ

∂P

)
T

dP =
Cφp
T

dT − V φαφ dP, (3.5)

where S is specific entropy, Cp is isobaric heat capacity, V is specific volume, α is the
isobaric coefficient of thermal expansion, and the superscript φ indicates the prop-
erties of a single phase. If we consider two phases, solid (s) and liquid (l), coexisting
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at equilibrium along a univariant curve (denoted 2φ), then for coexisting solid and
liquid we have (

dSs

dP

)
2φ

=
Cs
p

T

(
dT
dP

)
2φ
− V sαs, (3.6 a)

and (
dSl

dP

)
2φ

=
C l
p

T

(
dT
dP

)
2φ
− V lαl. (3.6 b)

For upwelling of a closed system at constant total specific entropy, S0, the system
must always satisfy

FSl + (1− F )Ss = S0. (3.7)
Hence for batch melting

F =
S0 − Ss

Sl − Ss =
S0 − Ss

∆Sfus
, (3.8)

where ∆Sfus is the specific entropy of fusion for a one-component system, which is
in general a function of P and T .

(i) Constant coefficients
In the special case that ∆Sfus is constant (equivalent to requiring C l

p = Cs
p and

V lαl = V sαs), the isentropic productivity for batch melting can be obtained by dif-
ferentiation of equation (3.8):

−
(
∂F

∂P

)
S

=
1

∆Sfus

(
Cs
p

T

(
dT
dP

)
2φ
− V sαs

)
=

1
∆Sfus

(
Cs
p

T

(
∆Vfus

∆Sfus

)
− V sαs

)
, (3.9)

where the second equality follows from the Clausius–Clapeyron equation for a one-
component system. Since melting occurs over a range of pressure along a univariant
curve with a finite slope, it also occurs over a range of temperatures. Hence equa-
tion (3.9) shows that even in the simplest possible case—a one-component system
with constant ∆Sfus, ∆Vfus, Cs

p and V sαs—isentropic productivity is not constant;
i.e. it depends on temperature.

The magnitude of this effect can be estimated as follows. Neglecting the tempera-
ture difference due to the finite slope of the solid adiabat, the ratio of the temperature
at the onset of isentropic melting to that at the completion of melting in a system
with constant coefficients can be approximated by

T0

T1
= exp

(
∆Sfus

C l
p

)
(3.10)

(Miller et al. 1991). If we take as typical values of the entropy of fusion ca. R per atom
and of the liquid heat capacity ca. 3R per atom, we obtain T0/T1 ∼ 1.4. For most
silicates the V sαs term in equation (3.9) is very small, so melting at the completion
of isentropic melting in a one-component system would typically be ca. 1.4 times
more productive than at the onset of melting.

Although fractional melting is neither isentropic nor reversible, as indicated above
we define an idealized adiabatic fractional melting process as a series of infinitesimal
isentropic melting steps, each followed by complete extraction of the liquid, carrying
its entropy out of the system. We note that each infinitesimal increment of melting
is equivalent to the initial increment of batch melting of a system that has been
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reduced by a factor (1−F ) from the original mass of the system. Since F is defined
as the mass fraction of the original system that is now liquid (equation (3.3)), we
obtain

−
(

dF
dP

)
fractional

=
1

∆Sfus

(
Cs
p

T

(
∆Vfus

∆Sfus

)
− V sαs

)
(1− F ) (3.11)

(for a more rigorous derivation of productivity for incrementally isentropic processes,
see the Appendix). Thus, in a one-component system, productivity during fractional
melting is initially the same as that of batch melting, but becomes steadily smaller
(and asymptotically approaches zero as the system approaches 100% melt) as up-
welling proceeds. We emphasize that in a one-component system with constant co-
efficients, productivity during fractional fusion defined this way differs from batch
productivity solely because of decreasing source mass. Note that the productivity
per unit mass of solid, another way to define productivity, is always equal for batch
and fractional melting in a one-component system with constant ∆Sfus (except in
the case of solid–solid phase changes; see Asimow et al. (1995a)).

We can obtain an expression suitable for batch and fractional melting, as well as
intermediate processes, in which some but not all of the melt is left in the system (so-
called continuous or dynamic melting; Langmuir et al. 1977) if we note that at any
time the fraction of the original mass that remains in the system is (1−F )/(1− f).
For batch melting this term is equal to one, and for fractional melting it reduces to
(1 − F ). Thus, for the general process of isentropic melting steps possibly followed
by some melt extraction in the constant-coefficient one-component case (see the
Appendix for a more rigorous derivation),

−
(

dF
dP

)
=

1
∆Sfus

(
Cs
p

T

(
∆Vfus

∆Sfus

)
− V sαs

)
(1− F )
(1− f)

. (3.12)

We will generally refer to −(dF/dP ) as the ‘isentropic productivity’ even though for
fractional fusion the process is only isentropic in each infinitesimal melting step.

To illustrate melting behaviour in a one-component system, equations (3.9) and
(3.11) have been applied to pure diopside (we neglect any incongruent melting be-
haviour; Biggar & O’Hara 1969; Kushiro 1972). Using the properties given in table
1 and taking the values of ∆Sfus, ∆Vfus, Cs

p and V sαs at the 1 bar melting point to
apply at all P and T , we obtained a linear melting curve (figure 2a). The same phase
relations are shown in S–P space in figure 2b, where it should be noted that although
the entropy difference between coexisting solid and liquid is constant, the boundaries
of the two-phase field are not linear, reflecting the 1/T dependence in equations (3.6)
(Asimow et al. 1995a). Choosing an isentrope that intersects the melting curve at
7 GPa, we obtained the productivity curves shown in figure 2c for batch and frac-
tional melting (for comparison, the hypothetical linear case is also shown), which
have been integrated to yield the F versus P curves shown in figure 2d. Batch melt-
ing in this case yields a concave-up F versus P curve, while the curve for fractional
melting is concave down. Productivity at the completion of batch melting in this
case is a factor 1.6 higher than the initial productivity. The upward curvature of the
batch melting curve seen here will be referred to below as the ‘1/T effect’. This effect
is of only secondary significance in multicomponent systems, but we draw attention
to it here in order to illustrate the improbability of constant productivity for any
isentropic melting process.
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Figure 2. Isentropic melting behaviour of a hypothetical one-component system in which the
heat capacity, (dV/dT )P , ∆Vfus and ∆Sfus of diopside at 1 bar and 1664 K are taken to obtain
over all P and T . (a) The solidus is linear. It has been chosen to go through 7 GPa and 2338 K,
close to the actual diopside solidus (Rigden et al. 1989). (b) Isentropic melting is best illustrated
with an S–P plot. Batch melting follows a horizontal line on this figure. The reference isentrope
shown as a heavy horizontal line intersects the solidus at 7 GPa. (c) The isentropic productivity
(expressed as percent melting per kbar pressure decrement) versus P for batch and fractional
paths that intersect the solidus at 7 GPa. The dashed line is for comparative purposes only; it
does not correspond to any isentropic path. (d) Melt fraction versus P for the same batch and
fractional paths.

(ii) Variable coefficients
Figure 2c shows that for the case of constant coefficients, isentropic melting leads

to increasing productivity in the batch case, reflecting the 1/T dependence, and
decreasing productivity in the fractional case, reflecting decreasing source mass. We
now apply the same analysis using more realistic variations in thermodynamic param-
eters as functions of P and T . In the case that ∆Sfus is not constant, equations (3.9)
and (3.12) do not apply. Instead we begin from equation (3.1) and, as shown in the
Appendix, we derive the following general expression for any process of isentropic
melting steps possibly followed by melt extraction in a one-component system:

−
(

dF
dP

)
=

1
∆Sfus

(
Cs
p + f(C l

p − Cs
p)

T

(
dT
dP

)
2φ
− [V sαs + f(V lαl − V sαs)]

)
(1− F )
(1− f)

.

(3.13)
For fractional melting in a one-component system with variable coefficients, f is zero,
so equation (3.13) reduces to equation (3.11).

To examine the variable-coefficient case, we again used diopside as the example
and treated it as a one-component system. The solidus curve predicted by the ther-
modynamic data given in table 1 is shown in figure 3a; the downward curvature
results from the greater compressibility of the liquid relative to the solid. The same
phase relations are shown in S–P space in figure 3b; the curvature of each boundary
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Table 1. Thermophysical properties of Di (figures 2 and 3) and a–b binarya (figures 4–6)

parameter diopside and a solids b solid di and a liqs b liquid units

S0 (298 K) 142.5b 174.2 J mol−1 K−1

H0 (298 K) −3200.583b −2842.221 kJ mol−1

V0 (1664 K) 69.11b same 82.34c same m3 mol−1 × 10−6

Tfus (1 bar) 1664 K 1164 K
∆Sfus (1 bar) 82.88e same J mol−1 K−1

KT0 90.7c same 21.9d 24 GPa
K′T 4.5c same 6.9d 6.9
α 3.2× 10−5c same 6.5× 10−5c same K−1

Cp 305.41− 160.49 T−0.5 same 353c same J mol−1 K−1

−71.66× 105 T−2

+92.184× 107 T−3b

aFor binary example, end member a is identical to diopside, end member b is selected to have
a 1 bar melting point 500 K lower. Unreferenced quantities for b are chosen arbitrarily to give
well-behaved binary phase-loop up to 10 GPa.
bBerman (1988).
cRigden et al. (1989) and sources therein.
dLange & Carmichael (1990).
eStebbins et al. (1983).

of the two-phase field is higher than in the constant coefficient case, reflecting the
(dT/dP )2φ term in equations (3.6). Using these coefficients, we computed F (P ) from
equation (3.8) and −(dF/dP ) from equation (3.13) subject to the constraint f = F
along the batch adiabat that intersects the solidus at 7 GPa. For fractional melting,
we computed −(dF/dP ) along the path that intersects the solidus at 7 GPa using
equation (3.13) subject to the constraint f = 0, and integrated to obtain F (P ). The
results are shown in figures 3c and 3d.

Comparison of figures 2c and 3c shows that in systems with variable coefficients,
the increase in productivity with increasing melt fraction due to the curvature of the
solidus can be substantial for batch melting; in the case shown it leads to large (e.g.
a factor of 5.7 between F = 0 and F = 0.9) increases in productivity as melting pro-
ceeds. In fact, as shown by comparing the fractional fusion curves in figures 2c and 3c,
the increase in productivity due to curvature of the solidus in the more realistic case
overwhelms the tendency for productivity to decrease due to the decreasing mass of
the source and results in increasing productivity with progressive melting even for
fractional fusion (although there must be a maximum and productivity must eventu-
ally decrease at high melt fraction, since melt fraction normalized by original source
mass must for fractional melting asymptotically approach F = 1 in equation (3.11)).
We note that equation (3.13) also shows that a solidus slope that is negative or less
than the adiabatic gradient will generally lead to crystallization rather than melting
with decreasing pressure at constant entropy (Rumble 1976; Albarède 1983; Iwamori
et al. 1995).

The strong increase in productivity in the variable-coefficient one-component case
reflects the increase in the slope of the solidus with decreasing pressure. The same
effect is present in multicomponent systems, where the analogous controlling variable
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Figure 3. Isentropic melting behaviour of diopside using the thermodynamic data from table 1.
(a) The solidus is concave down, due to greater compressibility of the liquid relative to the solid.
(b) The curvature of the solidus translates into greater curvature of the edges of the two-phase
field in S–P space, compared to figure 2b. The heavy horizontal line is an S–P path for batch
melting. (c) The isentropic productivity versus P for batch and fractional paths that intersect
the solidus at 7 GPa. The dashed line is for comparative purposes only; it does not correspond
to any isentropic path. (d) Melt fraction versus P for the same batch and fractional paths.

is (∂T/∂P )F , the slope of a constant melt fraction contour; note that all such contours
are collapsed onto the univariant solidus in P–T space in a one-component system
but are arrayed between the solidus and the liquidus (and are not, in general, parallel
to either) in multicomponent systems. The influence of the slopes of these contours
on isentropic productivity will be referred to below as the ‘(∂T/∂P )F effect’.

(b ) Multicomponent systems
For the general case in a multicomponent system, the expression for −(dF/dP )

for isentropic or incrementally isentropic melting paths with possible melt extraction
is derived in the Appendix:

− dF
dP

=


Cs
p + f(C l

p − Cs
p)

T

(
∂T

∂P

)
F

− [V sαs + f(V lαl − V sαs)] +
(
∂SX
∂P

)
F(

Cs
p + f(C l

p − Cs
p)
/
T

(
∂F

∂T

)
p

)
+

(1− f)
(1− F )

(Sl − Ss) +
(
∂SX
∂F

)
P

 ,

(3.14)
where the superscript ‘s’ now refers to the bulk properties of the residual (usually
polymineralic) solid assemblage and (∂SX/∂P )F and (∂SX/∂F )P are shorthand no-
tation for terms that reflect the effects on Sl and Ss of changes in liquid and mineral
composition and of changes in the relative abundances of the minerals in the solid as-
semblage (see Appendix; for related equations, see Verhoogen 1965; McKenzie 1984;
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Figure 4. Phase diagram of a two-component model system a–b; both solid and liquid are ideal
solutions. Model data are in table 1. (a) T versus Xb at 1 bar. (b) S versus Xb at 1 bar. Tie-lines
in the two-phase field indicate entropy and composition of coexisting phases. (c)-(f) Analysis
of isentropic melting is visualized by a series of S versus Xb sections at P = 1 bar, 3.3 GPa,
6.7 GPa and 10 GPa with the point Xb = 0.1, S = 663 J mol−1 K−1 and the tie-line that passes
through it at each pressure highlighted. The position of the point along the highlighted tie-line
gives the melt fraction by the lever rule; this sequence illustrates the importance, both of the
movement of the phase loop as a function of pressure, and the rotation of the tie-lines towards
the vertical near the end members in determining melt fraction and productivity.

Iwamori et al. 1995). Note that ∆Sfus, defined as the entropy difference between a
solid and liquid of the same composition, does not appear in this expression. Most
earlier thermodynamic treatments of adiabatic melting in multicomponent systems
have equated Sl − Ss or (∂S/∂F )P,T (which is equivalent to the sum of the last two
terms in the denominator of (3.14)) with ∆Sfus for the bulk peridotite, which has un-
doubtedly led to inaccuracies. The essential first-order change from equation (3.13)
is the presence of a term in the denominator involving the partial derivative of melt
fraction with respect to temperature at constant pressure, (∂F/∂T )P , which we call
the isobaric productivity. In a one-component system, isobaric melting occurs at
a unique temperature, so this quantity is infinite. Hence the first term in the de-
nominator of equation (3.14) as well as the terms due to compositional and modal
changes in the entropy of the phases vanish for one-component systems and this
expression reduces to equation (3.13). For multicomponent systems, (∂F/∂T )P thus
joins (∂T/∂P )F as a key source of variability in isentropic productivity. Note that
the 1/T effect will typically be of secondary importance in the multicomponent case,
since it now contributes both to the numerator and denominator of the expression
for (dF/dP ).

In this section, we explore the origins and importance for isentropic productivity
of variations in (∂F/∂T )P in a simple two-component binary phase loop and then in
MELTS simulations of peridotite melting. We will emphasize that (∂F/∂T )P reflects
changes in liquid and solid composition during melting via conservation of mass as
expressed in the lever rule. We then demonstrate that variations in both (∂F/∂T )P
and (∂T/∂P )F are needed for a reasonably accurate understanding of the variations
in (dF/dP ). We also show that variations of other parameters with melt fraction,
including Sl − Ss, do not affect productivity variations by more than ca. 10%, even
when phases are exhausted from the residue.
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(c ) Two-component systems
Before considering isentropic melting, we first evaluate isobaric productivity in

two-component systems. We approach the problem in this way because isobaric melt-
ing can be treated using familiar phase diagrams from which the effect of composition
on productivity can be deduced easily and because we wish to isolate isobaric pro-
ductivity from the other terms in the general expression for incrementally isentropic
productivity (equation (3.14)). In this exercise, we use as a model system a hypo-
thetical binary a–b with complete solid solution in the solid and ideal mixing for
both the liquid and solid solutions (figure 4). End member a has the thermodynamic
properties of diopside; end member b has similar properties, except the melting point
at 1 bar is arbitrarily chosen to be 500 ◦C lower than that of a. Model parameters
for the end members are listed in table 1. We chose a complete solid solution model
as our example, rather than a eutectic or peritectic involving solid phases of fixed
composition, because all mantle phases are solid solutions and hence the phase loop
captures the essential behaviour of the natural system (except when a phase is ex-
hausted on melting, as discussed later); we chose this hypothetical binary rather
than the actual diopside–hedenbergite system because the exaggerated difference in
melting points of the two end members allows the effects of a finite melting interval
to be more easily seen.

(i) Isobaric melting
In a two-component system, the productivity of isobaric melting with increasing

temperature is simply a matter of conservation of mass. If we consider a system
where the bulk composition is given by Xb, the mass fraction of component b, we
can write

FX l
b + (1− F )Xs

b = Xb, or F =
(Xb −Xs

b)
(X l

b −Xs
b)
, (3.15)

which is just a statement of mass balance (i.e. the familiar lever rule for graphical
analysis of phase diagrams). For batch melting, differentiation of equation (3.15)
leads to(

∂F

∂T

)batch

P

= −
(
∂Xs

b

∂T

)
P

(
1

X l
b −Xs

b

)
− (Xb −Xs

b)
(
∂(X l

b −Xs
b)/∂T

)
P

(X l
b −Xs

b)2
. (3.16)

For fractional melting the second term in equation (3.16) vanishes since the instan-
taneous solid composition is always equal to the bulk composition and source mass
decreases as (1− F ), which leads to(

∂F

∂T

)fractional

P

=
(
∂Xs

b

∂T

)
P

(
1

X l
b −Xs

b

)
(1− F ). (3.17)

(a more rigorous derivation of the expression for isobaric fractional melting requires
starting from extensive variables as in the derivation in the Appendix).

The inverse relationship between isobaric productivity and the compositional dif-
ference between coexisting liquid and solid (i.e. the 1/(X l

b − Xs
b) factor) is gener-

ally the most important term in both equations (3.16) and (3.17) for the simple
phase loop. The second term in (3.16) is important at high melt fraction (i.e. where
F = (Xb −Xs

b)/(X l
b −Xs

b) is large) or when the solids are fixed or nearly fixed in
composition (note that the first term goes to zero if the solid phases are fixed in com-
position); the derivative of solid composition in the first term is also important near
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Figure 5. Isobaric batch and fractional melting of the model binary system a–b at 1 bar according
to the phase relations shown in figure 4. Xb values indicate the bulk composition of the solid
before the initiation of melting. (a) Batch melting, F versus T . (b) Fractional melting, F versus
T . Note that all curves finish melting at T = 1664 K, the melting point of the a end member. (c)
Isobaric productivity in percent melting per degree temperature increase for batch melting. The
dashed curve shows the first term in equation (3.16) and is the locus of values of productivity
on the solidus (F = 0) for various bulk compositions. (d) Isobaric productivity for fractional
melting. The values differ from the dashed solidus productivity curve only by a factor (1− F ).

the exhaustion of a phase from the residue when a multiphase residual assemblage
is melting (see below). Equations (3.16) and (3.17) yield infinite (∂F/∂T )P during
eutectic or peritectic melting.

The key effect of variable composition of the phases is to cause isobaric productiv-
ity to be small when the difference between liquid and solid compositions, (X l

b−Xs
b),

is large. This is illustrated by the quantitative results (figure 5) based on the calcu-
lated phase relations for our model binary phase loop (figure 4a), in which the form
of the melt fraction versus temperature curve varies with bulk composition mostly
according to whether the compositional difference between the liquid and solid ini-
tially increases or always decreases with increasing melt fraction. Melt fraction versus
temperature curves and isobaric productivity versus temperature curves for batch
and fractional melting of the bulk compositions Xb = 0.1, 0.25, 0.5 and 0.75 are
shown in figure 5. The dashed curves in figures 5c and 5d plot the first term in equa-
tion (3.16); this is the initial isobaric productivity (i.e. at the solidus) as a function of
bulk composition. The fractional fusion curves differ from the dashed curve only by
a factor (1− F ); the batch melting curves differ from the dashed curve according to
the second term in equation (3.16), which increases with F and changes sign at the
widest point on the phase loop (T = 1393 K, Xs

b = 0.15, X l
b = 0.85). Examination of

the dashed curve in figures 5c and 5d shows that in this example, the multiplication
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by (∂Xs
b/∂T )P in the first term of equation (3.16) contributes a strong asymmetry

to the productivity function, which is otherwise dominated by the (nearly symmet-
ric about 1393 K) inverse compositional distance term. The net effect of all these
terms is that compositions with Xb < 0.06 show a melt fraction versus temperature
curve for batch melting that is always concave up (i.e. an isobaric productivity that
always increases as melting proceeds). For fractional melting, productivity always
increases for Xb < 0.03. For more b-rich bulk compositions, the melt fraction versus
temperature curves (such as those illustrated in figures 5a and 5b for Xb = 0.25, 0.5
and 0.75) are initially concave down, but concave up at higher F . The critical bulk
Xb below which the melt fraction versus temperature curve is everywhere concave
up depends on the shape of the phase loop; in the diopside–hedenbergite system
where the phase loop is much narrower, it occurs at XHd ∼ 0.4 for batch melting and
XHd ∼ 0.2 for fractional melting. In the forsterite–fayalite system the corresponding
values are XFa ∼ 0.14 for batch melting and XFa ∼ 0.1 for fractional melting. The
location of this critical Xb cannot be read directly off the phase diagram; it depends
on all the terms in equations (3.16) or (3.17) and does not correspond to the widest
point on the phase loop. Note again that in the special case where the solid residue is
fixed in composition (i.e. only batch melting is continuous in temperature), the first
term in equation (3.16) vanishes and the difference in melt and solid composition
always decreases with F , so the geometric effect leads to the melt fraction versus
temperature curve being everywhere concave up.

(ii) Isentropic melting
There is no simple two-dimensional phase diagram with which to portray isen-

tropic melting for a binary loop. Inspection of the general expression for isentropic
melting (equation (3.14)) shows that the geometric effect related to the composi-
tional distance between liquid and solid (i.e. the (∂F/∂T )P term discussed in the
preceding paragraphs) is superimposed on the 1/T and (∂T/∂P )F effects that con-
trol isentropic productivity in one-component systems. The relationship among the
terms in these equations can be visualized by examining figures 4b–f . Figure 4b shows
S versus Xb at 1 bar for the model binary phase loop; figures 4c–f show a series of
simplified S versus Xb sections on the same scale at successively higher pressures.
With increasing pressure, the entire phase loop moves up (i.e. to higher values of
specific entropy); in the one-component diopside-like end member a, this increase is
illustrated in figure 3b. Isentropic melting of a particular bulk composition can then
be visualized as the movement of the loop over a particular fixed point (Xb = 0.1,
S = 663 J mol−1 K−1 in this example) as pressure decreases.

Although the shape of the phase loop is complex and changes with pressure, its
overall downward movement with decreasing pressure tends to contribute, for any
composition, to increasing productivity with decreasing P (i.e. a concave up F ver-
sus P diagram) just as it does in the one-component end members. This reflects the
1/T and (∂T/∂P )F dependencies described above. The melt composition effect is
discernible in the rotation of the tie lines (in this case little influenced by decompres-
sion) towards the vertical from the center to the edges of the loop, which results in
changes in the difference in composition between the solid and liquid with increased
melting. Although it is not as easy to read as the diagrams for the isobaric melting
case, examination of figure 4 shows that for a-rich compositions, the compositional
difference between solid and melt decreases with decreasing pressure (and increasing
melt fraction). Just as in the isobaric melting case, this leads to a purely geomet-
ric contribution tending to increase productivity as pressure decreases. However,
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Isentropic Melting of Two Component System: Xb = 0.1
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Figure 6. Isentropic batch and incrementally isentropic fractional melting of the model binary
system a–b. (a) T versus P , showing the univariant melting curves for the end members and both
batch and fractional isentropic melting paths for composition a90b10 that intersect the solidus at
10 GPa. (b) F versus P , showing the upward curvature characteristic of increasing productivity.
The dashed line is a linear extrapolation of the productivity at the solidus; it does not correspond
to any isentropic path. (c) Isentropic productivity versus P for batch and fractional melting.
The dashed curve shows ‘local’ fractional productivity of a unit mass of solid at any pressure;
the light solid curve shows −dF/dP for incrementally isentropic fractional melting, where F is
normalized to the original source mass (see text). (d) Isentropic productivity versus P for batch
melting (heavy curve) compared to a calculation (light solid curve) of productivity based on
equation (3.14) where all parameters except (∂T/∂P )F and (∂F/∂T )P were held constant at
their values on the solidus at 10 GPa (see text for details). Also shown are calculations in which
we allowed (∂T/∂P )F (dotted curve) or (∂F/∂T )P (dashed curve) to vary along the adiabat,
holding the other quantity constant at its solidus value. Variations in (∂F/∂T )P capture the
major qualitative features of the productivity, but (∂T/∂P )F variations are also required to get
a good quantitative fit.

for more b-rich compositions, the compositional difference between solid and liquid
initially increases with progressive isentropic melting; as a consequence, when this
increase is quite pronounced, complex melt fraction versus P functions (including
initially decreasing productivity) can result from the combination of this with the
1/T and (∂T/∂P )F effects.

Results for isentropic melting in the model binary system are shown in figure 6
for isentropic batch and fractional melting of the bulk composition a90b10 starting at
10 GPa. As anticipated in the above discussion of figures 4c–f , isentropic productiv-
ity increases with progressive melting. For fractional melting, figure 6c shows both
the productivity normalized to original source mass, the usage we adopt, and the pro-
ductivity relative to unit mass of solid present at any pressure (dotted line, labelled
‘local fractional’). It is interesting to note that (except exactly at the solidus where
they are identical) the local productivity of fractional melting in this system is lower
than the productivity of batch melting at low melt fraction but slightly greater at
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high melt fraction (similar to models of peridotite melting; Hirschmann et al. 1994).
Comparison of figures 5 and 6 shows that the contribution of the (∂T/∂P )F effect
can lead to increasing isentropic productivity at all F even for compositions such as
Xb = 0.1 that have initially decreasing isobaric productivity.

To demonstrate the contributions of the (∂T/∂P )F and (∂F/∂T )P terms to vari-
ations in isentropic productivity, we calculated productivity curves by substituting
these quantities into equation (3.14), assuming all other parameters (Cs

p, C
l
p, T , f ,

V sαs, V lαl and (Sl − Ss)) are constant at their values on the solidus at 10 GPa (al-
though (1−F )/(1−f) is also allowed to vary so that fractional melting is normalized
properly and all terms due to compositional and modal changes in the entropy of
the phases, i.e. (∂SX/∂P )F and (∂SX/∂F )P , are set to zero). We also tried allow-
ing only one of (∂T/∂P )F and (∂F/∂T )P to vary and holding the other constant
along with the above list of parameters at its value on the solidus; the resulting
three curves (labelled according to which quantity or quantities we allowed to vary)
are shown in figure 6d. Only when we allow both (∂T/∂P )F and (∂F/∂T )P to vary
do we reproduce the isentropic productivity function reasonably well, demonstrat-
ing that variations of both parameters control the detailed shape of the productivity
function. Note that the chosen bulk composition in this model system has a total
isobaric melting interval (i.e. an average (∂F/∂T )P ) for 0.1 < Xb < 0.9 comparable
to that of natural peridotite (Takahashi 1986); hence the quantitative importance of
(∂F/∂T )P relative to other sources of productivity variation in equation (3.14) in
this two-component system is comparable to its importance in peridotite melting.

(d ) Multicomponent systems
Equation (3.14) shows how knowledge of (∂F/∂T )P , (∂T/∂P )F , and values of

parameters such as (Sl − Ss), Cp, T and V α can be translated into predictions of
isentropic productivity and its variability for any system of arbitrary compositional
complexity and variance. There are, however, factors other than those we have con-
sidered in the model systems treated above that contribute to the variability of these
parameters and thus to variations in productivity during isentropic melting. For ex-
ample, we have emphasized that the dominant term for isobaric melting along a
binary phase loop is the inverse dependence on the compositional distance between
liquid and solid. However, discontinuous reactions and phase exhaustion must also
play important roles in productivity for polymineralic assemblages. We have not
presented simple examples involving such phenomena, but they are readily treated
in terms of the same parameters discussed above. For example, the exhaustion of
a phase restricts the compositional variations available to the solid residue. This
translates into a discontinuous drop in the rate of change of the composition of the
solid with temperature (equivalent to the (∂Xs

b/∂T )P term in equations (3.16) and
(3.17)) and therefore results in a discontinuous drop in productivity even though
the compositional distance (equivalent to X l

b−Xs
b in equations (3.16) and (3.17)) is

continuous. The effect of the derivative of bulk solid composition on productivity is
also evident at the end of eutectic or peritectic melting in a simple system (where
the change from infinite (∂Xs

b/∂T )P and (∂F/∂T )P to finite values results in a cor-
responding decrease in −dF/dP in equation (3.14)), at the loss of a phase during
cotectic melting in a ternary system, and at the exhaustion of clinopyroxene during
melting of natural peridotite. Note that in none of our simulations of batch fusion
have we observed a drop in productivity except on phase exhaustion (or addition, as
in the case of the spinel-plagioclase transition (Asimow et al. 1995a)).
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Figure 7. Isentropic melting of 9-component model fertile peridotite (Hart & Zindler 1986;
Asimow et al. 1995a) based on calculations using MELTS. (a) Isentropic productivity versus P
during batch melting (heavy curve) compared with productivity predicted by equation (3.14)
with all parameters except (i) (∂T/∂P )F (dotted curve), (ii) (∂F/∂T )P (dashed curve), or (iii)
(∂T/∂P )F and (∂F/∂T )P (light solid curve) held constant at their values near the middle of the
melting paths at 11 kbar (see text for details). (b) Analogous to (a) for fractional melting. (c)
Melt fraction F versus P for batch melting, compared to melt fraction expected by integrating
the three curves in (a). (d) Analogous to (c) for fractional melting.

4. Model peridotite system

Given the simple rules developed above for one- and two-component systems and
their generalization to multicomponent systems, we are now in a position to antic-
ipate the productivity function of isentropically melting mantle peridotite during
batch fusion and of incrementally isentropic fractional fusion. Although a rigorous
analysis is needed to understand the interaction of all the variables controlling pro-
ductivity in a complex multicomponent system, the simple arguments developed here
give considerable insight into the overall behaviour. For example, our analysis makes
clear that isentropic productivity is very unlikely ever to be even approximately con-
stant. In addition, it suggests that the concave up melt fraction versus P functions
predicted for peridotite melting by the MELTS algorithm (Hirschmann et al. 1994;
Asimow et al. 1995a) are robust features of the behaviour of natural peridotite.

We have examined quantitatively controls on productivity using the results of isen-
tropic batch and fractional MELTS calculations on a model peridotite. We used a
nine-component model composition in the system SiO2–TiO2–Al2O3–Cr2O3–Fe2O3–
FeO–MgO–CaO–Na2O (composition from Hart & Zindler 1986). Choosing an adia-
bat that intersects the solidus at 22 kbar, we calculated batch melting by minimizing
H at fixed S, P and bulk composition to obtain T , F and the compositions of coexist-
ing liquid and solids. For fractional fusion, we searched in pressure for the point along
the isentrope that has a fixed incremental melt fraction (dF = 0.001) and then took
the entropy and composition of the residue as the reference for the next step. Batch
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isentropic productivity was calculated by differentiation of the F versus P results,
and fractional productivity was determined by dividing dF by the pressure difference
between successive melt extractions. Figure 7 shows the calculated productivity and
melt fraction as functions of pressure for batch and fractional melting.

We have evaluated the extent to which the sources of variation isolated above
(i.e. (∂T/∂P )F and (∂F/∂T )P ) combine to control variations in MELTS-predicted
peridotite productivity via an exercise similar to the analysis of the binary case
above. We assumed all other parameters (Cs

p, C
l
p, T , f , V sαs, V lαl and (Sl − Ss)

but not (1 − F )/(1 − f), which normalizes fractional melting, or (∂SX/∂P )F and
(∂SX/∂F )P , which we neglect altogether by setting them to zero) in equation (3.14)
to be constant (at their 11 kbar values, i.e. at the midpoint of the melting paths)
and calculated the isentropic productivity along the melting path based on several
different sets of values for (∂T/∂P )F and (∂F/∂T )P : (i) the actual value of (∂T/∂P )F
at each point on the melting path, with (∂F/∂T )P held constant at its 11 kbar value;
(ii) the actual value of (∂F/∂T )P at each point on the melting path, with (∂T/∂P )F
held constant at its 11 kbar value; and (iii) the actual values of both (∂T/∂P )F and
(∂F/∂T )P along the melting path. The resulting curves are shown in figure 7, labelled
by what was allowed to vary. For both batch and fractional fusion, shown in figures 7a
and 7b, case (ii) captures the general form of the isentropic productivity function,
including the rise to a peak at the exhaustion of clinopyroxene and the sharp drop-off.
Case (iii), however, shows much better quantitative agreement (although differences
are noticeable where productivity is large), demonstrating as for the binary case
presented earlier that variations in both (∂T/∂P )F and (∂F/∂T )P must be taken
into account to approximate accurately the productivity function. The fits to melt
fraction for case (iii) shown in figures 7c and 7d are also very good, indicating that
the overall amounts of melting during batch and fractional fusion of peridotite can be
precisely modelled using equation (3.14) and that variations in T , (Sl −Ss), Cp, V α
and compositional derivatives are of secondary importance compared to (∂T/∂P )F
and (∂F/∂T )P . We emphasize that this exercise is entirely based on the internally
consistent nature of the MELTS calculation; consequently, although it helps to isolate
the key parameters in the peridotite productivity function as predicted by MELTS,
it does not directly address the accuracy of the MELTS results for melt production
in nature.

The good qualitative match to the isentropic productivity obtained solely by vary-
ing (∂F/∂T )P (figures 7a and 7b) implies that the source of much of the variation in
isentropic productivity can be understood by examining the controls on (∂F/∂T )P .
Just as in the two-component system discussed above, the shape of the isobaric pro-
ductivity function reflects the compositions of coexisting melt and residue and is
dominated by the rate of change of the compositional difference between them (ex-
cept near the exhaustion of a phase in the more complex system). Near-solidus melts
of peridotite differ significantly in composition from the coexisting residue, and the
composition of the liquid changes rapidly with increased melting at low melt frac-
tions, becoming more similar to the composition of the residue with increased melting
(e.g. in the sense that the melts become richer in normative olivine and poorer in nor-
mative plagioclase and incompatible elements, and thus more similar to peridotite;
Takahashi & Kushiro 1983; Baker & Stolper 1994; Kushiro 1996). Our analysis indi-
cates that this ‘geometric effect’, which influences the (∂F/∂T )P function and hence
the isentropic productivity, is the main factor leading to low productivity near the
solidus and the strongly concave up melt fraction versus pressure function predicted
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by the MELTS calculations. It must be emphasized that peridotite melting is neither
invariant nor pseudo-invariant (there are many more components than phases and
hence in both MELTS calculations and experiments the compositions of liquids vary
continuously at all melt fractions) and thus eutectic and peritectic melting are very
poor models for peridotite. The important point is that the increase in isentropic
productivity with progressive melting in these calculations is dominated by the ten-
dency for the liquids to be initially very distant from the source composition (due
especially to high concentrations of incompatible elements like Na2O) and to move
towards the bulk composition with progressive melting.

As illustrated by figure 7, the discontinuous changes in isentropic productivity
associated with phase exhaustion are also precisely mirrored by changes in isobaric
productivity; in both cases this reflects the rate of change of the residual solid com-
position (analogous to the (∂Xs

b/∂T )P parameter in equations (3.16) and (3.17)). As
the exhaustion of clinopyroxene is approached during batch melting, the bulk resid-
ual solid composition changes significantly and its temperature derivative is large;
the result is a very high productivity in this region. At the actual disappearance of
clinopyroxene from the residue, the derivative of bulk solid composition decreases dis-
continuously, resulting in a drop in productivity. In the fractional case, the shape of
the productivity function just before clinopyroxene exhaustion is somewhat different
(figure 7a versus 7b; note that this difference is not apparent in the F versus P fig-
ures, figure 7c versus 7d); the decrease in productivity in anticipation of clinopyroxene
exhaustion during fractional fusion probably reflects the fact that the jadeite com-
ponent of clinopyroxene is nearly exhausted a few kbar before the phase disappears,
leading to a decrease in the temperature derivative of clinopyroxene composition and
hence a decrease in both isobaric and isentropic productivity in advance of the much
larger discontinuous drop at cpx-out. This example illustrates quite clearly a point
made in the Introduction, that efforts to model or understand the productivity of
peridotite melting, that do not include the effects of phase equilibria and changing
solid and liquid compositions as melting progresses, are very unlikely to capture the
essence of the isentropic melting process.

The predicted overall increase in isentropic productivity with melt fraction in
the batch melting case, punctuated by drops in productivity upon exhaustion of
phases from the residue, appears to be a general feature of simple systems with solid-
solution, particularly when the solid solution(s) are close to the high-temperature end
member(s). MELTS calculations suggest that it is also a robust feature of the more
complex multicomponent peridotite system. The productivity function for fractional
fusion can be more complex, but it is also likely to have a concave upward shape at
low degrees of melting of relatively fertile peridotite. Note that productivity during
fractional fusion of fertile peridotite, although lower than that of batch fusion at low
melt fraction (but not exactly at the solidus, where they must be equal), is predicted
to be comparable to that of batch fusion after several percent melting (figures 7a and
7b; see also Hirschmann et al. 1994). Although contrary to most previous speculations
(Niu & Batiza 1991; Langmuir et al. 1992), recent experimental work appears to
confirm this prediction (Hirose & Kawamura 1994).

5. Conclusions

There is no thermodynamic basis for assuming a constant rate of melt generation
during isentropic depressurization. Even in a simple one-component system, the isen-
tropic productivity depends on 1/T and the slope of the solidus, leading to increasing
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productivity with progressive melting (i.e. the melt fraction versus pressure func-
tion is concave up). Although other parameters appear in the general expression for
isentropic productivity in multicomponent systems, the most important factors are
the slopes of equal melt-fraction contours, (∂T/∂P )F , and the isobaric productivity,
(∂F/∂T )P , both of which can be determined, in principle, from relatively straight-
forward phase equilibrium experiments. The isobaric productivity is the principal
source of the variability of productivity during isentropic melting of peridotite, and
it can be reduced to a simple statement of mass balance if the compositions of co-
existing melt and residue are known. At low melt fractions, changes in the isobaric
melt productivity are dominated by the decrease with progressive melting in the
compositional difference between liquid and bulk residual solids.

Several authors have constructed models of peridotite melting in which (∂F/∂T )P
is initially very high and decreases with progressive melting, based largely on analogy
with low variance melting in simple systems (e.g. at a eutectic or peritectic). Ther-
modynamic modelling using MELTS, however, does not predict such behaviour. In
contrast, initial liquids are predicted to differ significantly in composition from the co-
existing bulk solid and to move closer in composition to the residue with progressive
melting, leading to low productivity at the solidus and increases in productivity with
increasing melt fraction (i.e. the same variations in productivity found for analogous
simple systems). The same effects carry over into isentropic productivity. There are
additional complexities related to phase changes and phase exhaustions, but their
impact on isentropic productivity can also be understood by examining these same
effects.

In summary, analysis of simple systems and thermodynamic calculations on com-
plex peridotite compositions lead us to predict that isentropic melting of typical
mantle peridotites will be characterized by an overall increase in isentropic produc-
tivity with melt fraction in the batch melting case, punctuated by drops in produc-
tivity upon exhaustion of each phase from the residue. The productivity function
for fractional fusion can be more complex, but we predict that the concave upward
shape of the melt fraction versus pressure curve predicted for the batch fusion case
is also likely to be a characteristic of low degrees of fractional melting of relatively
fertile peridotite.

The authors are grateful to Mark Ghiorso and Richard Sack, the authors of MELTS, for permis-
sion to play with their code and suit it to our needs. Mike O’Hara provided a helpful review and
much important devil’s advocacy. This work was supported by NSF grants OCE-9504517, EAR-
9219899 and OCE-9314505. This is Division of Geological and Planetary Sciences contribution
5703.

Appendix A.

Here we derive a general expression for isentropic and for incrementally isentropic
melt productivity in multicomponent systems. We consider only processes that obey
the restriction

dS = Sl dM (A 1)

where S is the extensive entropy of the system, Sl is the specific entropy of the liquid
phase, and M is the mass of the system. We also require that the mass of liquid in
the source region, M l, be a function only of the mass of solid in the source region,
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M s, and constants such that

dM l

dM s =
(
∂M l

∂M s

)
Y

and
(
∂M l

∂Y

)
Ms

= 0 (A 2)

for any variable Y . For multicomponent systems, the superscript s refers to bulk
properties of the polymineralic solid assemblage. These constraints limit the processes
to those for which entropy change of the system only occurs by extraction of melt
and for which there is a strict coupling between melt production and melt extraction.
For example, for batch fusion, dM = 0 (i.e. dM l = −dM s), so equation (A 1) means
that the process is isentropic. For fractional fusion, the mass of the system decreases
due to removal of liquid (i.e. dM = dM s), and the entropy of the system decreases by
the amount carried away by the liquid; since this is the only way in which the entropy
of the system changes, fractional fusion subject to the constraint of equation (A 1)
can be envisioned as a series of infinitesimal increments of isentropic fusion followed
by complete melt removal.

Given equations (A 1) and (A 2), the changes in the state of the system are entirely
determined by two variables, so we can write the total differential of S in terms of
P and M s:

dS =
(
∂S

∂P

)
Ms

dP +
(
∂S

∂M s

)
P

dM s. (A 3)

Since M = M l +M s, equations (A 1) and (A 3) lead to(
∂S

∂P

)
Ms

dP +
(
∂S

∂M s

)
P

dM s = Sl dM l + Sl dM s. (A 4)

Dividing equation (A 4) by dP , rearranging, and applying the chain rule

dM l

dP
=

dM l

dM s

dM s

dP
(A 5)

leads to an expression for the change in solid mass with pressure:

dM s

dP
=
(
∂S

∂P

)
Ms

/[
Sl + Sl dM l

dM s −
(
∂S

∂M s

)
P

]
. (A 6)

We now evaluate the partial derivatives that appear in equation (A 6). We differ-
entiate

S = M sSs +M lSl (A 7)
to obtain (

∂S

∂P

)
Ms

= M s
(
∂Ss

∂P

)
Ms

+M l
(
∂Sl

∂P

)
Ms

+ Sl
(
∂M l

∂P

)
Ms

. (A 8)

The restriction, equation (A 2), causes the last term in equation (A 8) to vanish. The
evaluation of the remaining terms in equation (A 8) is related to equations (3.6 a)
and (3.6 b) in the text, except that partial derivatives at constant M s appear in place
of total derivatives along the two-phase boundary, and more importantly we must
now include derivatives that describe changes in the compositions of the phases:

dSl =
(
∂Sl

∂T

)
P,Xl

dT +
(
∂Sl

∂P

)
T,Xl

dP +
nl∑
i=1

(
∂Sl

∂X l
i

)
T,P,Xl

j 6=i

dX l
i, (A 9 a)
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dSs =
(
∂Ss

∂T

)
P,Xs

dT +
(
∂Ss

∂P

)
T,Xs

dP +
ns∑
k=1

[
Sk dγk+γk

nk∑
i=1

(
∂Sk

∂Xk
i

)
T,P,Xk

j 6=1

dXk
i

]
,

(A 9 b)
where X l

i is the mass fraction of component i in the nl component liquid phase and(
∂Sl

∂X l
i

)
T,P,Xl

j 6=i

should be recognized as the partial specific entropy of component i in the liquid. In
(A 9 b), Ss represents a weighted sum over ns solid phases, γk is the mass fraction of
the kth solid phase in the bulk assemblage, Sk is the specific entropy of the kth phase,
Xk
i is the mass fraction of component i in the kth solid phase of nk components, and(

∂Sk

∂Xk
i

)
T,P,Xk

j 6=i

is the partial specific entropy of component i in solid phase k. All these new quan-
tities are, in general, functions of temperature, pressure and bulk composition. For
brevity in what follows we define the entire last term in (A 9 a) as dSl

X and the entire
last term in (A 9 b) as dSs

X , since they represent the changes in Sl and Ss due to com-
positional and/or modal changes in the liquid and bulk solid, respectively. We note
that these terms have been neglected without comments in all previous treatments of
isentropic melting of which we are aware. In most cases, first-order approximations
of productivity remain reasonable when dSl

X and dSs
X are neglected.

From (A 9 a) and (A 9 b) we can obtain(
∂Sl

∂P

)
Ms

=
C l
p

T

(
∂T

∂P

)
Ms

− V lαl +
(
∂Sl

X

∂P

)
Ms

, (A 9 c)(
∂Ss

∂P

)
Ms

=
Cs
p

T

(
∂T

∂P

)
Ms

− V sαs +
(
∂Ss

X

∂P

)
Ms

, (A 9 d)

where the last terms are abbreviations for sums similar to those in (A 9 a) and (A 9 b)
except (∂X l

i/∂P )Ms is substituted for dX l
i, (∂γk/∂P )Ms for dγk, and (∂Xk

i /∂P )Ms

for dXk
i . Using the intensive variable f = M l/(M l +M s) for the mass fraction of

liquid in the system and combining equations (A 8), (A 9 c) and (A 9 d) leads to(
∂S

∂P

)
Ms

= (M s +M l)
(
Cs
p + f(C l

p − Cs
p)

T

(
∂T

∂P

)
Ms

−[V sαs + f(V lαl − V sαs)] + f

(
∂Sl

X

∂P

)
Ms

+ (1− f)
(
∂Ss

X

∂P

)
Ms

)
, (A 10)

and below for brevity we will use the definition(
∂SX
∂P

)
Ms

≡ f
(
∂Sl

X

∂P

)
Ms

+ (1− f)
(
∂Ss

X

∂P

)
Ms

.

Next we take the partial derivative of equation (A 7) with respect to M s at con-
stant P :(

∂S

∂M s

)
P

= Ss + Sl
(
∂M l

∂M s

)
P

+M s
(
∂Ss

∂M s

)
P

+M l
(
∂Sl

∂M s

)
P

. (A 11)
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To simplify equation (A 11) we can obtain from (A 9 a) and (A 9 b):(
∂Sl

∂M s

)
P

=
C l
p

T

(
∂T

∂M s

)
P

+
(
∂Sl

X

∂M s

)
P(

∂Ss

∂M s

)
P

=
Cs
p

T

(
∂T

∂M s

)
P

+
(
∂Ss

X

∂M s

)
P

,

 (A 12)

where again the last terms in each expression are defined similarly to the last terms
in (A 9 a) and (A 9 b) except that partial derivatives with respect to M s at constant
P replace all the total differentials, which together with the definition of f and (A 2)
lead to(

∂S

∂M s

)
P

= Ss + Sl ∂M
l

∂M s

+(M s +M l)
(
Cs
p + f(C l

p − Cs
p)

T (∂M s/∂T )P
+ f

(
∂Sl

X

∂M s

)
P

+ (1− f)
(
∂Ss

X

∂M s

)
P

)
, (A 13)

and for further brevity we define(
∂SX
∂M s

)
P

≡ f
(
∂Sl

X

∂M s

)
P

+ (1− f)
(
∂Ss

X

∂M s

)
P

.

We now substitute equations (A 10) and (A 13) into (A 6) to obtain our final ex-
pression in terms of extensive mass variables:

− dM s

dP
=

Cs
p + f(C l

p − Cs
p)

T

(
∂T

∂P

)
Ms

− [V sαs + f(V lαl − V sαs)] +
(
∂SX
∂P

)
Ms(

Cs
p + f(C l

p − Cs
p)

T (∂M s/∂T )P

)
− (Sl − Ss)

(M s +M l)
+
(
∂SX
∂M s

)
P

,

(A 14)
where we retain Sl − Ss and (∂Sx/∂M s)P instead of attempting to define the last
two terms in the denominator as ∆Sfus since this does not correspond to the common
understanding of the meaning of ∆Sfus. Now the definition of F = 1 − (M s/M 0),
the fraction of the initial solid mass that has been melted, gives

dF
dP

= − 1
M 0

dM s

dP
,

(
∂F

∂Y

)
P

= − 1
M 0

(
∂M s

∂Y

)
P

and
(
∂Y

∂P

)
F

=
(
∂Y

∂P

)
Ms

,

(A 15)
for any variable Y (including notably T and SX , which can be shown using the
definitions above), which relations together with the equation (1 − F )/(1 − f) =
(M s +M l)/M 0 allow us to eliminate all extensive variables from equation (A 14)
and produce our final productivity equation:

− dF
dP

=


Cs
p + f(C l

p − Cs
p)

T

(
∂T

∂P

)
F

− [V sαs + f(V lαl − V sαs)] +
(
∂SX
∂P

)
F(

Cs
p + f(C l

p − Cs
p)

T (∂F/∂T )P

)
+

(1− f)
(1− F )

(Sl − Ss) +
(
∂SX
∂F

)
P

 .

(A 16)
Equation (A 16) can be simplified directly for batch and fractional melting by
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taking F = f and f = 0, respectively. Furthermore, equation (A 16) reduces to the
correct form (equation (3.13)) for one-component systems, where (i) it is straightfor-
ward to set ∆Sfus = (Sl−Ss) and there are no SX terms since composition is constant
and only one solid phase can participate in melting except at an invariant point, (ii)
the last two terms in equation (A 11) and hence the first term in the denominator of
equation (A 16) vanish since (∂T/∂F )P = 0 when isobaric melting takes place at a
unique temperature, and (iii) (∂T/∂P )F = (dT/dP )2φ since all melting is restricted
to the univariant two-phase curve. Finally, equation (A 16) can be reduced to the
constant coefficient one-component case (equation (3.12)) since

∆Sfus(P, T ) = ∆Sfus(P0, T0) +
∫ T

T0

(C l
p − Cs

p)
T

dT +
∫ P

P0

(V lαl − V sαs) dP (A 17)

means that constant ∆Sfus also requires (C l
p − Cs

p) = 0 and (V lαl − V sαs) = 0.
We also include here the expression for calculating the P–T path of upwelling ma-

terial undergoing any of the melting processes described by equations (A 1) and (A 2).
For batch melting it is simple to show(

∂T

∂P

)
S

=
(
∂T

∂P

)
F

+
(
∂F

∂P

)
S

/(
∂F

∂T

)
P

(A 18)

(e.g. Albarède 1992). A simple derivation beginning from the total differential of M s

expressed in terms of P and T followed by substitution of F for M s leads to the
corresponding result for (dT/dP ) subject to equation (A 1) rather than constant S:

dT
dP

=
(
∂T

∂P

)
F

+
dF
dP

/(
∂F

∂T

)
P

. (A 19)
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Discussion
R. W. Nesbitt (Southampton Oceanography Centre, University of Southampton,
UK). In Professor Stolper’s discussion dealing with the behaviour of melts under
batch melting and fractional melting conditions he drew attention to the fact that
in the case of the latter, melting would cease when the upwelling peridotite reached
a phase transition (such as the spinel to plagioclase peridotite transition). Melting
would then resume at a later stage once there had been a sufficient pressure drop.
Presumably this cessation would result in a significant change in melt chemistry and
the process may even be used to explain the MgO gap between komatiites which have
20–32 wt% MgO and high magnesian basalts (commonly called komatiitic basalts)
which range from 15% MgO downwards?

E. M. Stolper. There would certainly be a compositional gap between melts pro-
duced before and after the cessation of melting at a sufficiently strong phase tran-
sition. However, it is unlikely that either the spinel–plagioclase or garnet–spinel
peridotite transitions are responsible for the gap between komatiites and komati-
itic basalts. The spinel–plagioclase peridotite transition would not play a role at
the high temperatures and high degrees of melting of komatiite genesis, and the
garnet–spinel peridotite transition would have too small an effect in common upper
mantle compositions to produce a large gap in MgO content. On the other hand, if
decompression melting were to begin in the transition zone, the phase change asso-
ciated with the 410 km discontinuity might result in a significant gap between melts
from the transition zone and the overlying upper mantle. Whether this could help
to explain the origin of komatiites is difficult to say.
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